Wilson disease at a single cell level: intracellular copper trafficking activates compartment-specific responses in hepatocytes.

نویسندگان

  • Martina Ralle
  • Dominik Huster
  • Stefan Vogt
  • Wiebke Schirrmeister
  • Jason L Burkhead
  • Tony R Capps
  • Lawrence Gray
  • Barry Lai
  • Edward Maryon
  • Svetlana Lutsenko
چکیده

Wilson disease (WD) is a severe hepato-neurologic disorder that affects primarily children and young adults. WD is caused by mutations in ATP7B and subsequent copper overload. However, copper levels alone do not predict severity of the disease. We demonstrate that temporal and spatial distribution of copper in hepatocytes may play an important role in WD pathology. High resolution synchrotron-based x-ray fluorescence imaging in situ indicates that copper does not continuously accumulate in Atp7b(-/-) hepatocytes, but reaches a limit at 90-300 fmol. The lack of further accumulation is associated with the loss of copper transporter Ctr1 from the plasma membrane and the appearance of copper-loaded lymphocytes and extracellular copper deposits. The WD progression is characterized by changes in subcellular copper localization and transcriptome remodeling. The synchrotron-based x-ray fluorescence imaging and mRNA profiling both point to the key role of nucleus in the initial response to copper overload and suggest time-dependent sequestration of copper in deposits as a protective mechanism. The metabolic pathways, up-regulated in response to copper, show compartmentalization that parallels changes in subcellular copper concentration. In contrast, significant down-regulation of lipid metabolism is observed at all stages of WD irrespective of copper distribution. These observations suggest new stage-specific as well as general biomarkers for WD. The model for the dynamic role of copper in WD is proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intracellular trafficking of the human Wilson protein: the role of the six N-terminal metal-binding sites.

The Wilson protein (ATP7B) is a copper-transporting CPx-type ATPase defective in the copper toxicity disorder Wilson disease. In hepatocytes, ATP7B delivers copper to apo-ceruloplasmin and mediates the excretion of excess copper into bile. These distinct functions require the protein to localize at two different subcellular compartments. At the trans-Golgi network, ATP7B transports copper for i...

متن کامل

Wilson Disease Protein ATP7B Utilizes Lysosomal Exocytosis to Maintain Copper Homeostasis

Copper is an essential yet toxic metal and its overload causes Wilson disease, a disorder due to mutations in copper transporter ATP7B. To remove excess copper into the bile, ATP7B traffics toward canalicular area of hepatocytes. However, the trafficking mechanisms of ATP7B remain elusive. Here, we show that, in response to elevated copper, ATP7B moves from the Golgi to lysosomes and imports me...

متن کامل

Myosin Vb mediates copper export in polarized hepatocytes

The cellular machinery responsible for copper-stimulated delivery of the Wilson Disease protein ATP7B to the apical domain of hepatocytes is poorly understood. We demonstrate that myosin Vb regulates the copper-stimulated delivery of ATP7B to the apical domain of polarized hepatic cells, and that disruption of the ATP7B-myosin Vb interaction reduces ATP7B apical surface expression. Myosin Vb ta...

متن کامل

Copper binding to the N-terminal metal-binding sites or the CPC motif is not essential for copper-induced trafficking of the human Wilson protein (ATP7B).

The Wilson protein (ATP7B) is a copper-translocating P-type ATPase that mediates the excretion of excess copper from hepatocytes into bile. Excess copper causes the protein to traffic from the TGN (trans-Golgi network) to subapical vesicles. Using site-directed mutagenesis, mutations known or predicted to abrogate catalytic activity (copper translocation) were introduced into ATP7B and the effe...

متن کامل

Interaction of the copper chaperone HAH1 with the Wilson disease protein is essential for copper homeostasis.

The delivery of copper to specific sites within the cell is mediated by distinct intracellular carrier proteins termed copper chaperones. Previous studies in Saccharomyces cerevisiae suggested that the human copper chaperone HAH1 may play a role in copper trafficking to the secretory pathway of the cell. In this current study, HAH1 was detected in lysates from multiple human cell lines and tiss...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 285 40  شماره 

صفحات  -

تاریخ انتشار 2010